
2696 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 12, DECEMBER 2007

Self-Checking Carry-Select Adder Design
Based on Two-Rail Encoding
Dilip P. Vasudevan, Parag K. Lala, and James Patrick Parkerson

Abstract—Carry-select adders are one of the faster types of
adders. This paper proposes a scheme that encodes the sum bits
using two-rail codes; the encoded sum bits are then checked
by self-checking checkers. The multiplexers used in the adder
are also totally self-checking. The scheme is illustrated with the
implementation of a 2-bit carry select adder that can detect all
single stuck-at faults on-line; the detection of double faults is
not guaranteed. Adders of arbitrary size can be constructed by
cascading the appropriate number of such 2-bit adders. A range
of adders from 4 to 128 bits is designed using this approach
employing a 0.5- m CMOS technology. The transistor overhead
in implementing these self-checking adders varies from 19.51%
to 20.94%, and the area overhead varies from 16.07% to 20.67%
compared to adders without built-in self-checking capability.

Index Terms—On-line fault detection, self-checking checker,
transient faults, two-rail code.

I. INTRODUCTION

ARITHMETIC operations are frequently used in many
VLSI-based systems [1]. The design of faster and highly

reliable adders is of major importance in such systems. Over the
years several types of adders have been designed, for example
ripple-carry, carry-skip, carry-select adder, etc. Each type of
adder has different area and delay constraints, as shown in
Table I [2].

As can be seen in Table I, the carry-select adder is one of
the faster types of adders, and has smaller area overhead than
all other types of adders except for the carry-skip adder. Fig. 1
shows the block diagram of an n-bit carry-select adder. The
main difference between a carry-select adder and a ripple-carry
adder is that in a ripple-carry adder the carry has to ripple
through all full-adders, but in the case of a carry-select adder
the carry has to pass through a single multiplexer.

As discussed above, the carry-select addition process results
in faster addition. To guarantee reliable operation of such an
adder the detection of faults in the adder, especially transient
faults, is extremely important. The probability of transient faults
occurring in modern VLSI systems has grown significantly
because of the shrinkage in transistor dimensions [3]. In VLSI

Manuscript received February 2, 2005; revised February 21, 2006. This paper
was recommended by Associate Editor S.-G. Chen.

D. P. Vasudevan is with the University of Edinburgh, Edinburgh, EH9 3JZ,
U.K. (e-mail: D.P.Vasudevan@sms.ed.ac.uk).

P. K. Lala is the with the Electrical at the Texas A&M University at
Texarkana, Texarkana, TX 75505 USA (e-mail: parag.lala@tamut.edu).

J. P. Parkerson is with the Department of Computer Science and Computer
Engineering, University of Arkansas, Fayetteville, AR 72701 USA (e-mail:
jparkers@uark.edu).

Digital Object Identifier 10.1109/TCSI.2007.910537

TABLE I
AREA AND SPEED OF DIFFERENT ADDERS (TAKEN FROM [2])

systems transient faults can only be detected by built-in on-
line fault detection, i.e., self-checking capability. The design of
self-checking adders based on arithmetic residue codes was first
proposed in [4], [5]. However, arithmetic codes cannot detect
the presence of all single faults in the circuit [6], [7]. In addi-
tion the checkers for such codes are complex and the overhead
is high. An alternative method for implementing self-checking
ripple carry adders is parity prediction [8]. This technique de-
tects errors only at the output of an adder. In the presence of
a fault in the carry, the fault gets propagated to other outputs
and remains undetected [9]. In recent years, several techniques
have been proposed for online fault detection in various types of
adders [10]–[14], [16], [17]. A technique for an online testable
carry-select adder based on time redundancy concepts is given
in [15]. The drawback of this technique is that the computation
time is more than double the execution time, thus making the
addition operation extremely slow. In [18] a technique for de-
signing self-checking carry-select adders based on a simplified
design of such adders [16], [17] has been presented; the area
overhead of the resulting adders is very high (40%). Another
technique for an online testable carry-select adder using 4-bit
self-checking carry-select adders as building blocks has been
proposed in [19]. The disadvantage of this approach is the high
area overhead resulting from the complex reconfiguration logic,
and also the multiplexers and demultiplexers at the outputs are
not self-checking.

This paper proposes a design scheme for implementing self-
checking carry-select adders by cascading totally self-checking
2-bit adders. The resulting carry-select adders satisfy the fol-
lowing criteria [9].

1) They are totally self-checking for all single faults.
2) Have a built-in compact checker.
This paper is organized as follows. Section II presents the de-

sign of a self-checking 2-bit carry-select adder. Section III
describes the configuration logic required by the 2-bit
adder. Section IV provides the transistor level design of

1549-8328/$25.00 © 2007 IEEE

VASUDEVAN et al.: SELF-CHECKING CARRY-SELECT ADDER 2697

Fig. 1. n-bit carry-select adder.

Fig. 2. Proposed design of a 2-bit self-checking carry–select adder.

the self-checking 2-to-1 multiplexer. Fault coverage is dis-
cussed in Section V. Section VI gives the overhead calculation
of the self-checking adder design from 4 to 128 bits. The im-
plementation of 64- and 128-bit adders in CMOS is discussed
in Section VII. Simulation results of the implemented design
are presented in Section VIII. The discussion of the results is
given in Section IX, and the paper is concluded in Section X.

II. DESIGN OF A SELF-CHECKING 2-BIT

CARRY-SELECT ADDER

The design of a totally self-checking 2-bit carry-select adder
is shown in Fig. 2. The 2-pair-2-rail checker can detect the pres-
ence of any single stuck-at fault in the circuit on-line. In addition

Fig. 3. Two-pair two-rail checker (taken from [20]).

to the checker, three self-checking multiplexers and an EX-NOR

gate are used for detecting these faults. Any single stuck-at fault
in the modified adder can be detected online. The self-checking
multiplexers detect faults at the primary outputs; faults internal
to the circuit are detected by allowing the effect of the fault to
propagate to the output stage. A totally self-checking checker at
the output stage as in Fig. 2 determines the presence of the fault.
The checker has two outputs; two of the output combinations 01
and 10 (1-out-of-2 code) are considered valid code words. The
sum bits with carry-in 0 and 1 generated internally by the adder
are used as inputs to the checker. A nonvalid checker output, i.e.,
00 or 11 indicates the presence of a fault in the circuit or in the
checker. A valid code word is generated only when every input
pair of is complementary for all to . In Fig. 2
one of the inputs in the complementary input pair to the
checker is produced by the output of the adder with carry-in 0
and the second one by the adder with carry-in 1. The input

is from the output of the adder with carry-in equal to .
The input is from the output of the EX-NOR gate whose inputs
are and .

The two-pair two-rail checker receives pairs of inputs
and where and . The

outputs of the checker are also in two-rail form . It
has been shown in [20] that a totally self-checking 2-pair-2-rail

2698 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 12, DECEMBER 2007

Fig. 4. Full adder.

checker can be implemented using eight transistors as shown
in Fig. 3.

It should be clear from the above discussion that a carry-se-
lect adder could be tested on-line if the checker is provided with
complementary inputs, i.e., valid input code words. Hence, a
configuration block that produces valid input code words for
the checker from the adder’s outputs is needed as shown in
the Fig. 2. The design of the configuration logic is discussed
in Section III.

The schematic of the full adder is implemented with 28 tran-
sistors as shown in Fig. 4.

III. CONFIGURATION LOGIC FOR THE INPUT OF THE CHECKER

A close observation of the sum bits generated with a carry-in
of “0” and “1” shows the following property of addition:

In an addition of two -bit numbers with the least significant
bit being “0” for both the numbers, if the carry-in bit is changed
from one value to another the LSB of the sum is complemented,
the other bits remain unchanged.

1) Example: Note that when two binary numbers 1100 and
0100 are added together with “0” as carry-in the resultant sum
() has “0” as the least significant bit. When the same binary
numbers are added with a “1” as carry-in, the resultant sum ()
has “1” as the LSB

Comparing and it can be observed that the LSB
changes from “0” to “1” whereas the remaining bits remain the
same. In general the first sum bit in two full adders with the
same input patterns (and)

Fig. 5. Configuration logic circuit.

and different carry-ins will be complementary. Any subsequent
sum bit, e.g., the th bit, will be complementary if

where EX-OR . Table II shows the possible
input combinations for the 2-bit self-checking adder and the cor-
responding carry and sum outputs. and are the sum
outputs of the two full adders with inputs (,) and (,

) respectively, and carry-in “0.” The corresponding carry-out
signals are and . and are the sum outputs of
the two full adders with inputs (,) and (,) , respec-
tively, and carry-in “1.” The carry-out signals are and .

It can be observed from the output patterns of four sum bits
that the bits and are always complementary to each
other. Thus, these lines can be directly fed to the first two inputs
of the checker and . The sum bit signals “ ” and “ ”
have to be connected to the inputs and of the checker in
such a way that their combination will produce only comple-
mentary signals. It can be observed from Table II that

Thus EX-OR ; hence and (EX-NOR

) form the complementary input pair to the checker. Fig. 5

VASUDEVAN et al.: SELF-CHECKING CARRY-SELECT ADDER 2699

TABLE II
ALL POSSIBLE COMBINATIONS OF BIT PATTERNS TO THE PROPOSED SELF-CHECKING ADDER

Fig. 6. Self-checking multiplexer.

shows the resulting configuration circuit with the adder outputs
as its inputs. The outputs of the configuration logic are inputs

, , , to the checker. It only needs one EX-NOR gate and
appropriate connections of the four output lines of the adder for
implementing the required logic.

IV. DESIGN OF SELF-CHECKING MULTIPLEXER

In the proposed self-checking adder the checker circuit
cannot detect on-line the presence of faults in the multiplexer.
Thus, it is necessary to make the multiplexer self-checking in
order to increase the fault coverage of the adder. In the presence
of faults the outputs of the multiplexer generate nonvalid code
words and can either be transferred to a checker or can be used
to raise an error flag.

A self-checking multiplexer is designed using four transmis-
sion gates and an inverter as shown in Fig. 6. The multiplexer in
the proposed design has two outputs and ’ that are com-
plementary to each other. In the presence of a fault the outputs
are identical indicating the presence of the fault. The inputs are

, , and the control signal . When the control signal
in the multiplexer is logic “0” input is transferred as

the normal output and ’ is transferred as the complemented
output.

When is logic “1” input is transferred as the
normal output where as ’ is transferred as the comple-
mented output. These outputs can be transferred as input pairs
to the checker, thus enabling online detection of faults in a mul-
tiplexer. Note that only in the first stage of an n-stage adder, an
inverter is used to generate ’ from the externally applied
input. Since the multiplexer in the carry-out of the first stage
of the self-checking adder generates the complement of the
selected carry-out signal, the next stage adder is provided with
both the carry-select signal and its complement; this applies
to all other adder stages. Thus, no inverters are required in the
multiplexers to generate the complement of intermediate carry
signals. Although the self-checking feature in a multiplexer
can be obtained by duplicating the multiplexer and comparing
their outputs, this configuration will require a comparator that

2700 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 12, DECEMBER 2007

Fig. 7. Adder with a s-a-1 fault at the carry-out of the full adder.

also needs to be self-checking to guarantee the reliability of the
comparison process. Consequently the overhead will be higher
than the self-checking multiplexer proposed here.

V. FAULT COVERAGE

The proposed self-checking adder design can detect the pres-
ence of a fault at all nodes in the circuit except at the primary
inputs, or at the primary outputs of the adder circuit. Some of
the potential nodes where the faults can be detected on-line are:

• Carry-out/carry-in of the adders
• Sum bits of the adders
• Inputs and outputs of the EX-NORs
• Inputs and outputs of the multiplexers
To illustrate let us consider the addition of two arbitrary pat-

terns 10 and 11.

Fig. 7 shows the implementation of the carry-select addition of
the two numbers.

A. Fault-Free Condition

In the absence of any fault in the circuit, the checker generates
valid code words. The input pairs to the 2-pair-2-rail checker are
(1,0), (0,1), (0,1) and (1,0). The actual carry-in, CIN, selects the
sum to be multiplexed and then propagates the final carry-out as
the actual carry-in to the successive stage.

1) Case 1: A Fault at the Carry-In /Carry-Out of the Adders:
If there is a fault at the carry-in or carry-out of the full adder

there can be a change in the values of the sum and the carry gen-
erated. Either the sum bits leading to the checker or the carry-in
leading to the successive adder is modified. This modified line
will carry the faulty value in the circuit and is propagated to the
checker where the fault is detected. In a few cases the change
in the sum bits with the carry-in “0” changes the outputs of the
configuration block.

Let us consider the case where the carry-out () from the
first bit in the first section, as shown in Fig. 7, is s-a-1 (fault).
The stuck-at fault forces the carry-out to an invalid state of 1
instead of the fault free state 0, thus forcing the full-adder cor-
responding to the second bit generates a sum () of 1 instead
of 0. This faulty value, propagated by the stuck-at fault is fed
to the checker as one of the inputs. The other input, which is
complementary in the fault free condition, is the output of the
EX-NOR gate. The output of the EX-NOR gate being dependent on

and will have the value of “1,” as both and
are 1 for the given input condition. This gives rise to an invalid
condition where the input pairs are non complementary. There-
fore, a nonvalid code word indicating the presence of fault ,
is produced.

2) Case 2: A Fault at the Sum Bits With Carry-In “0” and
Carry-In “1”: In the presence of a stuck-at fault at the sum bits
of the full adder, the fault is allowed to propagate to the checker
inputs. The fault does not modify the values of the carry-out
since the function evaluating the carry does not depend on the
sum. Instead the fault might modify the logic determining the
inputs to the EX-NOR and checker. Consider a fault (s-a-0) on
line as in Fig. 7. This line is fed as input to the EX-NOR.
Since this input () is “0” and another input () is “1,” the
output of the EX-NOR is “0” and hence the checker receives a
noncomplementary input pair, and the fault is detected.

3) Case 3: A Fault at the Inputs/Output of the EX-NOR: All
these faults lead to a similar type of error in the circuit. A fault
at the input of the EX-NOR gate is propagated to its output, which
is in turn transferred as a faulty input to the checker. Hence, any
error in the EX-NOR is always reflected as a fault on the checker
input. In the presence of such an error the situation becomes
similar to the one discussed in case 2, where a fault on line
propagates an error on to one of the input lines of the EX-NOR.
The fault modifies the line and output of EX-NOR from (0,1)
to (0,0), thus transferring a nonvalid input to the checker.

4) Case 4: Faults at the Inputs/Outputs of the Multiplexer
and Actual Carry-In: Any fault present at the inputs or the out-
puts of the multiplexer and the actual carry-in is propagated to
the primary outputs and can be detected at the output stage. As
shown in Fig. 8, if , and , in the
presence of a stuck-at 1 fault on one of the fan-out nodes of the
input line the faulty value is propagated as input to the
transmission gate C. This fault modifies the output (, ’)
from (0,1) to (0,0) and hence can be detected. Similarly any fault
on lines and can also be detected.

VI. OVERHEAD

The overhead in the proposed design for a self-checking 2-bit
adder is the 2-pair-2-rail checker, and the EX-NOR gates. The

VASUDEVAN et al.: SELF-CHECKING CARRY-SELECT ADDER 2701

Fig. 8. Self-checking multiplexer with faults.

Fig. 9. 6-bit self-checking adder.

number of transistors needed to implement these units for a 2-bit
addition is given below:

• full adder – 28 transistors;
• 2-pair-2 Rail checker- 8 transistors as proposed in [20];
• EX-NOR – 10 transistors;
• self-checking multiplexer- 12 transistors.
Self-checking adders of arbitrary size can be implemented by

cascading self-checking 2-bit adders. The block diagram of a
6-bit self-checking adder is shown in Fig. 9. Note that MUX2 in
a 2-bit adder (Fig. 2) is not needed when cascading a number of
2-bit adders except to generate the carry-out at the final stage of
the larger adder. In other words in all intermediate 2-bit adders
MUX2s are eliminated. Thus, the inclusion of the self-checking

feature does not result in any additional delays during the normal
operation of a carry-select adder implemented using the 2-bit
adder cells. The 6-bit self-checking adder is shown in Fig. 9.
is composed of twelve full adder blocks, seven self-checking
multiplexers, three EX-NOR gates and five 2-pair-2 rail checkers.

Table III-A shows the number of transistors needed for imple-
menting various size adders without the self-checking feature.
Table III-B shows the transistor overhead when self-checking
feature is incorporated; the overhead ranges from 19.51% to
20.94%. The adders were implemented in Mentor graphics-IC
station using 0.5- m CMOS technology with three metal layers.
The area overhead shown in Table III-C, ranges from 16.07% to
20.67%.

2702 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 12, DECEMBER 2007

Fig. 10. Layout of 2-bit adder with checker.

Fig. 11. Layout of the 2-pair-2-rail checker.

VII. IMPLEMENTATION OF A 64 BIT AND 128 BIT

SELF-CHECKING ADDER

The layout of the self-checking 2-bit adder is as shown in
Fig. 10. It consists of a group of four full adders connected indi-
vidually, forming dual ripple-carry adders performing two 2-bit
additions with “0” and “1” as carry-in, respectively. It occupies
an area of 130 92 m .

The layout of 2-pair-2-rail checker is shown in Fig. 11. It
has an area of 61 38 m . Fig. 12 shows the layout of the
self-checking multiplexer. The multiplexer occupies an area of
21 27 m and consists of two primary inputs, a control signal
and two primary outputs. The primary outputs are complemen-
tary to each other in the absence of any fault in the circuit.

Using these blocks a 64-bit self-checking carry-select adder
was implemented. The layout of the adder is shown in Fig. 13.
The adder has a total area of 2152 390 m . In implementing
the 64-bit carry-select adder, thirty-two blocks of 2-bit adders
and sixty-five 2-pair-2-rail checkers were used. A 128-bit adder
can be designed in a similar way; the layout of the 128-bit self-

Fig. 12. Layout of the self-checking Multiplexer.

checking adder is shown in Fig. 14. The adder has a total area
of 2152 790 m .

VASUDEVAN et al.: SELF-CHECKING CARRY-SELECT ADDER 2703

Fig. 13. Layout of 64-bit adder.

Fig. 14. Layout of 128-bit self-checking adder.

VIII. SIMULATION RESULTS

The self-checking 64-bit carry-select adder was simulated in
QuickSim II and the output waveforms are as shown in Figs. 15
and 16. For simplicity only the carry inputs and the least sig-
nificant 4 bits, i.e., , and the 2-pair-2-rail checker
outputs (Z1 and Z2) are shown in the figures. It is observed that
the propagation delay for the sum is 4.3 ns and the delay for the
checker is 2.9 ns.

Fig. 15 shows a simulation of the propagation delay for a
64-bit self-checking carry-select adder.

Fig. 16 shows the behavior of the self-checking 64-bit adder
for two different cycles. In the first cycle, the outputs are simu-
lated in the presence of a fault and in the second cycle the out-
puts are simulated without any faults. The fault as indicated in
Fig. 16 is a s-a-0 fault on line C10. C10 is at logic “1” in the
fault free case. During the first cycle, in the presence of a s-a-0
fault on line C10, the checker generates a nonvalid output code
word detecting the presence of the fault, and in the second cycle
i.e., the fault free case the checker produces valid a output code
word.

IX. DISCUSSION OF RESULTS

Carry-select adders are one of the fastest types of adders,
however they require a larger area overhead compared to other
type of adders. This is because they contain duplicated blocks
that are normally implemented using ripple-carry adders. The
speed of operation of a carry-select adder is affected by the
adder block sizes used to implement it [21]. To achieve the op-
timal speed, the lower bits have smaller sizes and the blocks
for the higher bits have larger sizes. The rationale behind the
strategy proposed in this paper is to incorporate self-checking
features into carry-select adders with low area overhead. This
can be achieved if a carry-select adder is built by cascading 2-bit

TABLE III
A. REQUIRED NUMBER OF TRANSISTORS WITHOUT SELF-CHECKING.

B. REQUIRED NUMBER OF TRANSISTORS WITH SELF-CHECKING.
C. AREA OVERHEAD

adder cells because the associated logic consists of only two-rail
checkers and very simple configuration logic that requires 8 and
10 transistors, respectively. On the other hand, to make optimal
carry-select adders with larger adder sizes self-checking, the
checker and the reconfiguration logic will be significantly more
complex. Theoretically it is possible to design k-pair two-rail
checkers for arbitrary number of input pairs but above 4-pair
two-rail checkers the overhead due to checker and configura-
tion circuit becomes unacceptably high. For example if a 64-bit
carry-select adder is designed using 4-4-8-12-12-12-12 adder
blocks for optimal operation, two 4-pair, one 8-pair and four
12-pair two-rail checkers in addition to complex reconfigura-
tion circuits will be needed for incorporating self-checking in
the adder. The self-checking checkers only monitor the output
of the adder circuit for detecting the presence of any fault. They

2704 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 12, DECEMBER 2007

Fig. 15. Simulation showing the propagation delay for a 64-bit self-checking carry-select adder.

Fig. 16. Simulation results in the presence and absence of a fault.

do not affect the performance of an adder because they operate
independently of the actual adder circuit. This strategy can in
principle be extended to carry-select adders designed for op-
timal operation using bigger size adder blocks, but as mentioned
previously the area overhead will be very high. Thus, there is a
trade-off between optimal speed and self-checking operation.

An alternative approach to self-checking carry-select adder
design is to make the ripple carry adders in a carry select adder
delay-insensitive. This requires using dual-rail signals for input
bits, sum bits and carry bits [22], and additional self-checking
logic to check the dual-rail outputs. Thus, in delay-insensitive
adders which are a subclass of asynchronous circuits, the
number of connections is doubled; this in turn significantly
increases the area overhead as well as the probability of fault
occurrence. In the self-checking carry select adder proposed in
this paper only two-rail signals generated by the multiplexers in

the adder are used by a simple configuration circuit to drive the
two-rail checkers, thus the area overhead is significantly lower.

X. CONCLUSION

A technique for implementing self-checking carry-select
adders of arbitrary size using a 2-bit self-checking carry-select
adder as the component is proposed. These adders are totally
self-checking for both permanent and transient single stuck-at
faults, however the detection of all double faults is not guar-
anteed. The amount of overhead in the proposed architecture
ranges from 19.51% to 20.94% of the total number of transis-
tors used in the design. A totally self-checking -pair-two-rail
checker indicates the presence of faults in the proposed design.
An EX-NOR gate connected appropriately with the sum outputs
provides valid input code words to the totally self-checking
checker. In the presence of any fault a nonvalid code word is
provided as input to the checker yielding a nonvalid output code
word. Detailed implementations of a 64-bit and a 128-bit adder
are provided to show the feasibility of the proposed design
scheme.

REFERENCES

[1] N. Weste and D. Harris, CMOS VLSI Design. Reading, MA: Addison
Wesley, 2004.

[2] Z. Chen and I. Koren, “Techniques for yield enhancement of VLSI
adders,” in Proc. Int. Conf. Appl. Specific Array Process., Strasbourg,
France, Jul. 24–26, 1995, pp. 222–229.

[3] Semiconductor Industry Assoc., The 2001 National Technology
Roadmap for Semiconductors, San Jose, CA, 2001.

[4] W. W. Peterson, “On checking an adder,” IBM J. Res. Dev., vol. 2, pp.
166–168, Apr. 1958.

[5] W. W. Peterson and E. J. Weldon, Error-Correcting Codes, 2nd ed.
Cambridge, MA: MIT Press, 1972.

[6] G. G. Langdon and C. K. Tang, “Concurrent error detection for group
look-ahead binary adders,” IBM J. Res. Dev., pp. 563–573, Sep. 1970.

[7] F. F. Sellers, M. Y. Hsiao, and L. W. Bearnson, Error Detecting Logic
for Digital Computers. New York: McGraw-Hill, 1968.

VASUDEVAN et al.: SELF-CHECKING CARRY-SELECT ADDER 2705

[8] E. Fujiwara and K. Haruta, “Fault-tolerant arithmetic logic unit using
parity based codes,” Trans. IECE Jpn., vol. E64, no. 10, pp. 653–660,
Oct. 1981.

[9] M. Nicolaidis, “Efficient implementations of self-checking adders
and ALUs,” in Proc. 23rd Annu. Int. Symp. Fault-Tolerant Comput.,
Toulouse, France, Jun. 22–24, 1993, pp. 586–595.

[10] J. C. Lo, J. C. Daly, and M. Nicolaidis, “Design of static CMOS self-
checking circuits using built-in current sensing,” in Proc. 1992 Fault
Tolerant Comput. Symp., Boston, MA, Jul. 8–10, 1992, pp. 104–111.

[11] F. W. Shih, “High performance self-checking adder for VLSI pro-
cessor,” in Proc. IEEE Custom Integr. Circuits Conf., San Diego, CA,
May 12–15, 1991, pp. 15.7/1–15.7/3.

[12] M. Nicolaidis, “Carry checking/parity prediction adders and ALUs,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 11, no. 1, pp.
121–128, Feb. 2003.

[13] W. J. Townsend, J. A. Abraham, and P. K. Lala, “On-line error
detecting constant delay adder,” in Proc. Int. On-Line Testing Symp.,
Rhodes, Greece, Jul. 7–9, 2003, pp. 17–22.

[14] P. K. Lala and A. Walker, “On-line error detectable carry-free adder
design,” in Proc. IEEE Int. Symp. Defect Fault Toler. VLSI Syst., San
Francisco, CA, Oct. 24–26, 2001, pp. 66–71.

[15] F.-H. W. Shih, High Performance Self-Checking Adder Having Small
Circuit Area, US PS 5,018,093, 1991.

[16] T. Y. Chang and M. J. Hsiao, “Carry-select adder using single ripple-
carry adder,” Electron. Lett., vol. 34, no. 22, pp. 2101–2103, Oct. 1998.

[17] K. Youngjoon and L.-S. Kim, “A low power carry-select adder with
reduced area,” in Proc. IEEE Int. Symp. Circuits Syst., Sydney, NSW,
Australia, May 6–9, 2001, vol. 4, pp. 218–221.

[18] V. Otscheretnij, D. Marienfield, E. S. Sogomonyan, and M. Goessel,
“Self-checking code-disjoint carry select adder with low area overhead
by use of Add1 circuits,” in Proc. Int. On-Line Testing Symp., Madeira
Island, Portugal, Jul. 12–14, 2004, pp. 31–36.

[19] B. K. Kumar and P. K. Lala, “On-line detection of faults in carry-select
adders,” in Proc. Int. Test Conf., Charlotte, NC, Sep.-Oct. 30-2, 2003,
vol. 1, pp. 912–918.

[20] J. C. Lo, “Novel area-time efficient static cmos totally self-checking
comparator,” IEEE J. Solid-State Circuits, vol. 28, no. 2, pp. 165–168,
Feb. 1993.

[21] B. Parhami, Computer Arithmetic: Algorithms and Hardware De-
sign. Oxford, U.K.: Oxford University Press, 2000.

[22] F. C. Cheng, S. H. Unger, M. Theobald, and W.-C. Cho, “Delay- insen-
sitive carry-lookahead adders,” in Proc. Int. Conf. VLSI Design, 1997,
pp. 322–328.

Dilip P. Vasudevan received the B.E. degree in electronics and communica-
tions engineering from the University of Madras, Chennai, India, in 2003, and
the M.S. degree in computer engineering from the University of Arkansas at
Fayetteville, in 2005. He is currently working toward the Ph.D. degree at the
University of Edinburgh, Edinburgh, U.K.

Parag K. Lala (M’81–SM’89–F’01) received an
M.Sc.(Eng.) degree from King’s College, London,
U.K., and the Ph.D. degree from The City University
of London, London, U.K.

He is the Cary and Lois Patterson Professor and
Chair of Electrical Engineering at Texas A&M
University at Texarkana. Previous to his current
position he was the Thomas Mullins Chair of
Computer Engineering, University of Arkansas at
Fayetteville. His current research interests are in
On-line testable logic, Self-healing digital system

design, hardware-based DNA sequence matching, and Nanocomputing system
design. He has supervised more than thirty MS and Ph.D. theses, and authored
or coauthored over 130 papers. He is also the author of six books including
Self-Checking and Fault-Tolerant Digital Design (Morgan-Kaufmann, 2001)
and Principles of Modern Digital Design (Wiley, 2007).

Dr. Lala was selected Outstanding Educator in 1994 by the Central North
Carolina section of the IEEE. In 1998, he was awarded the D.Sc. degree (in
electrical engineering) by the University of London for contributions to digital
hardware design and testing, and self-checking logic design. He was named a
Fellow of the IEEE in 2001 for contributions to the development of self-checking
logic and associated checker design. He is also a Fellow of the Institution of
Engineering and Technology (until recently Institution of Electrical Engineers)
in U.K.

James Patrick Parkerson received the B.S.E.E. de-
gree (honors), and the M.S.E.E. and Ph.D. degrees
from the University of Arkansas at Fayetteville.

He is an Associate Professor of computer science
and computer engineering at the University of
Arkansas at Fayetteville. He worked in the semi-
conductor industry as a senior IC design engineer
for Texas Instruments, Fairchild Semiconductor,
National Semiconductor, and Applied Microcircuits
Corporation. His research interests include ICs,
application-specific ICs, complex programmable

logic device (CPLD), field-programmable gate arrays, multichip module
(MCM), and printed circuit board design, and aerospace electronics. While at
the University of Arkansas he supported numerous research programs as the
chief design engineer at the High Density Electronics Center.

